欢迎浏览我公司网站!!
行业资讯
优化算法学习(LM算法)
时间: 2024-05-26浏览次数:
文章目录推荐书籍理论理解程序实现ceres安装代码:建议学习,METHODSFORNON-LINEARLEASTSQUARESPROBLEMS:篇幅不长,容易理解学习的时候可以参考另一篇,UNCONSTRAINEDOPTIMIZATION:NumericalOptimization2nd--JorgeNocedalStephenJ.Wrigh

建议学习,METHODS FOR NON-LINEAR LEAST SQUARES PROBLEMS:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
篇幅不长,容易理解
学习的时候可以参考另一篇,UNCONSTRAINED OPTIMIZATION:http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3217/pdf/imm3217.pdf

Numerical Optimization 2nd --Jorge Nocedal Stephen J. Wright:
http://www.bioinfo.org.cn/~wangchao/maa/Numerical_Optimization.pdf
《视觉SLAM十四讲》第六讲 https://github.com/gaoxiang12/slambook

知乎上看到一个回答非常好:

LM算法可以理解为Gauss-Newton算法与最速下降法的结合,如果理解了如何用上述算法求解目标函数最小值的问题,自然也能理解LM。

其实算法的本质就是 a. 站在当前位置( x k x_k xk? ),我们需要一个预言(oracle)告诉我们往哪走能找到目的地(最优解可能的方向,比如梯度方向);b. 我们沿着该方向走了一段距离之后(stepsize),更新当前位置信息( x k + 1 x_{k+1} xk+1? ),再问预言家我们下一步往哪走,以此反复。

所以,梯度下降法,给的 oracle 就是当前位置的梯度信息(损失方程关于变量的一阶导数):

x k + 1 = x k ? α g k x_{k+1}=x_k-\alpha g_k xk+1?=xk??αgk?

如果是牛顿法,给的 oracle 就是Hessian matrix(损失方程关于变量的二阶导数):

x k + 1 = x k ? H k ? 1 g k x_{k+1}=x_k-H_k^{-1}g_k xk+1?=xk??Hk?1?gk?(1)

为什么是一阶导数和二阶导数?因为我们知道,对于任意(处处可导的)方程,在其任意一点,我们都可以用泰勒展开式对其拟合,阶数越高,精度越高。但是,考虑到高阶导数的计算复杂度,以及三阶以上函数的非凸性,也不会使用高阶导数。

好了,那么LM算法的优势是什么?牛顿法虽然收敛速度快,但是需要计算 Hessian matrix,对于高维的问题,计算二阶导数会很复杂。因此我们有了Gauss-Newton算法。Gauss-Newton算法不直接计算Hessian matrix,而是通过 Jacobian matrix 对 Hessian matrix 进行拟合:

H ≈ J T J H\approx J^TJ HJTJ

但是,用 Jacobian matrix 拟合Hessian matrix,所计算出来的结果不一定可逆。所以在此基础上,我们引入了一个identity matrix:

H ≈ J T J + μ I H\approx J^TJ+\mu I HJTJ+μI

这也就得到了LM算法。如果我们把上述式子带入之前的公式(1),可以得到

x k + 1 = x k ? ( J k T J k + μ I ) ? 1 g k x_{k+1}=x_k-(J_k^TJ_k+\mu I)^{-1}g_k xk+1?=xk??(JkT?Jk?+μI)?1gk?

所以我们发现,当 μ \mu μ接近于0时,这个算法近似于Gauss-Newton算法;当 μ \mu μ很大时,这个算法近似于最速下降法。因此,这也是为什么LM算法称为Gauss-Newton算法与最速下降法的结合。最后,上一张图表示几种算法之间的关系:
在这里插入图片描述
参考文献:Wilamowski, B. M., & Yu, H. (2010). Improved computation for Levenberg–Marquardt training. IEEE transactions on neural networks, 21(6), 930-937.

一个回答:Matlab 的话现成的代码也是很多的;比如,Solve nonlinear least-squares (nonlinear data-fitting) problems,或者 Levenberg-Marquardt-Fletcher algorithm for nonlinear least squares problems。你可以在网站里面搜搜有没有适合你的。

作者:Sixiang
链接:https://www.zhihu.com/question/269579938/answer/349205519
来源:知乎

这是最上面推荐的书,英文不难:
在这里插入图片描述

gradient matrix, hessian matrix, jacobian matrix:gradient hessian jacobian matrix
https://www.value-at-risk.net/functions/

csdn 有个不错的博客:数值优化(Numerical Optimization)学习系列-目录:https://blog.csdn.net/fangqingan_java/article/details/48951191

视觉SLAM十四讲里推荐了**Ceres库**,Ceres solver 是谷歌开发的一款用于非线性优化的库,在谷歌的开源激光雷达slam项目cartographer中被大量使用。
安装和使用参考:
https://zhaoxuhui.top/blog/2018/04/04/ceres&ls.html
下面把关键操作贴出来:

  • 下载源码
  • 安装依赖:
 

这里libcxsparse可能存在版本问题(出现找不到对应版本),解决办法:

 
 

将这一部分取消注释,并保存,即可自动补全:
在这里插入图片描述

 
 

利用Ceres简单实现最小二乘曲线拟合。首先需要生成数据,这里采用OpenCV的随机数生成器生成误差。

 

CMakeLists.txt:

 

另外,有个levmar的C/C++的库:(这个还不会用)
levmar : Levenberg-Marquardt nonlinear least squares algorithms in C/C++
http://users.ics.forth.gr/~lourakis/levmar/index.html#download
http://users.ics.forth.gr/~lourakis/sparseLM/


Copyright © 2002-2022 盛煌-盛煌娱乐-盛煌全球注册认证站 版权所有

粤IP*******

平台注册入口